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Estimating the number of clusters in a data set via
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Summary. We propose a method (the ‘gap statistic’) for estimating the number of clusters (groups)
in a set of data. The technique uses the output of any clustering algorithm (e.g. K-means or
hierarchical), comparing the change in within-cluster dispersion with that expected under an
appropriate reference null distribution. Some theory is developed for the proposal and a simulation
study shows that the gap statistic usually outperforms other methods that have been proposed in the
literature.
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1. Introduction

Cluster analysis is an important tool for ‘unsupervised’ learning— the problem of finding
groups in data without the help of a response variable. A major challenge in cluster analysis is
the estimation of the optimal number of ‘clusters’. Fig. 1(b) shows a typical plot of an error
measure W, (the within-cluster dispersion defined below) for a clustering procedure versus the
number of clusters k£ employed: the error measure W, decreases monotonically as the number
of clusters k increases, but from some k& onwards the decrease flattens markedly. Statistical
folklore has it that the location of such an ‘elbow’ indicates the appropriate number of
clusters. The goal of this paper is to provide a statistical procedure to formalize that heuristic.

For recent studies of the elbow phenomenon, see Sugar (1998) and Sugar et al. (1999). A
comprehensive survey of methods for estimating the number of clusters is given in Milligan
and Cooper (1985), whereas Gordon (1999) discusses the best performers. Some of these
methods are described in Sections 5 and 6, where they are compared with our method.

In this paper we propose the ‘gap’ method for estimating the number of clusters. It is
designed to be applicable to virtually any clustering method. For simplicity, the theoretical
part of our analysis will focus on the widely used K-means clustering procedure.

2. The gap statistic

Our data {x;},i=1,2,...,n,j=1,2,..., p, consist of p features measured on » inde-
pendent observations. Let d;;; denote the distance between observations i and i’. The most
common choice for d;; is the squared Euclidean distance X; (x;; — xi,j)z.

Suppose that we have clustered the data into k clusters C,, C,, . . ., C,, with C, denoting
the indices of observations in cluster r, and n, = |C,|. Let
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Fig. 1. Results fo*r the two-cluster example: (a) data; (b) within sum of squares function W,; (c) functions
log (W) () and E;{log (W)} (E); (d) gap curve

X dy A (1)

D,. 2

So, if the distance d is the squared Euclidean distance, then W, is the pooled within-cluster
sum of squares around the cluster means (the factor 2 makes this work exactly). The sample
size n is suppressed in this notation.

The idea of our approach is to standardize the graph of log(W,) by comparing it with its
expectation under an appropriate null reference distribution of the data. (The importance of
the choice of an appropriate null model is demonstrated in Gordon (1996).) Our estimate of
the optimal number of clusters is then the value of k for which log(W),) falls the farthest
below this reference curve. Hence we define

Gap, (k) = E;{log(W})} — log(W)), €)
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where E¥ denotes expectation under a sample of size n from the reference distribution. Our
estimate £ will be the value maximizing Gap, (k) after we take the sampling distribution into
account. Note that this estimate is very general, applicable to any clustering method and
distance measure d;.

As a motivation for the gap statistic, consider clustering » uniform data points in p
dimensions, with k£ centres. Then, assuming that the centres align themselves in an equally
spaced fashion, the expectation of log(¥)) is approximately

log(pn/12) — (2/p) log(k) + constant. “

If the data actually have K well-separated clusters, we expect log(W,) to decrease faster
than its expected rate (2/p) log(k) for k£ < K. When k > K, we are essentially adding an
(unnecessary) cluster centre in the middle of an approximately uniform cloud and simple
algebra shows that log(W)) should decrease more slowly than its expected rate. Hence the gap
statistic should be largest when k = K.

As a further motivation, note that, in the case of a special Gaussian mixture model,
log(W,) has an interpretation as a log-likelihood; see Scott and Symons (1971). To develop
the gap statistic into an operational procedure, we need to find an appropriate reference
distribution and to assess the sampling distribution of the gap statistic.

3. The reference distribution

In our framework we assume a null model of a single component, and we reject it in favour of
a k-component model (k > 1), if the strongest evidence for any such & warrants it, i.e. we wish
to screen the evidence over all k > 1 simultaneously. This approach of guarding against
erroneous rejection of the one-component model is similar to that of Roeder (1994). A
component (cluster) of the distribution can be appropriately modelled by a log-concave
distribution, i.e. by a density of the form exp{«(x)}, where ¢ is a concave function (unless the
distribution is degenerate). Standard examples are of course the normal distribution (with
P(x) = —% |x||*) and the uniform distribution with convex support. In Walther (2001) it is
shown there that it is impossible to set confidence intervals (even one sided) for the number of
modes in a multivariate distribution, a crucial aspect for the goal of this paper. Thus we
model the components as log-concave densities instead of the often-used unimodal densi-
ties. We denote by S” the set of such single-component distributions (or random variables)
on R?.

To see how to find an appropriate reference distribution, consider for a moment the
population version corresponding to the gap statistic in the case of K-means clustering:

B MSE,.(k) MSEj (k)
sy =log { MSE,.(D } ~log { MSE, (1) }

where MSEy (k) = E(min,c, | X — p %), with the k-point set 4, C R” chosen to minim-
ize this quantity, is the population version corresponding to W,. We subtracted off the
logarithms of the variances to make g(1) = 0. So we are looking for a least favourable single-
component reference distribution on X *such that g(k) < 0 for all X € S” and all k > 1. The
first theorem shows that in the univariate case such a reference distribution is given by the
uniform distribution U = UJ0, 1].

Theorem 1. Let p=1. Then for all k > 1
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MSE (k)| _ MSE(k)
{MSEXU)} ~ MSE,(1)’

inf
XeSr

©)

In other words, among all unimodal distributions, the uniform distribution is the most
likely to produce spurious clusters by the gap test.

Note that the above problem is invariant under changes in location and scale, thus
allowing us to restrict attention to the uniform distribution supported on the unit interval.
Calculations show that MSE(k)/MSE (1) =1 /k2. So there is a formal similarity to a
proposal by Krzanowski and Lai (1985), following Marriott (1971), who suggested to estimate
k by comparing successive differences of W, k*”. Note, however, that their procedure is not
defined for the important single-component case kK = 1. Even more importantly, such an
approach will generally fail in a multivariate situation.

Theorem 2. If p > 1 then no distribution U € S8 can satisfy equation (5) unless its support
is degenerate to a subset of a line.

Note that the assertion of the last theorem is not contingent on our definition &” of a
single-component model. The same conclusion would apply if we based it on, say, unimodal
densities instead. Simple calculations show that employing a reference distribution with
degenerate support will result in an ineffectual procedure. Thus the upshot of the theorem is
that in a multivariate situation we will not be able to choose a generally applicable and useful
reference distribution: the geometry of the particular null distribution matters.

An obvious solution would be to generate reference data from the maximum likelihood
estimate (MLE) in S”. This is the nonparametric MLE of the density under the restriction of
being log-concave. This MLE can be shown to exist, as opposed to the MLE of a unimodal
distribution. In one dimension, this MLE can be computed with the help of the iterative
convex minorant algorithm (see Walther (2000)). However, we do not know how to compute
the MLE in higher dimensions, but the next section shows how the insights gained from
theorems 1 and 2 can be used to construct a simple and effective reference distribution.

4. The computational implementation of the gap statistic

The lesson of theorem 2 was that the multivariate variance structure matters. Our idea is to
exploit the shape information in the principal components instead of the more complicated
structure provided by the MLE.

We consider two choices for the reference distribution:

(a) generate each reference feature uniformly over the range of the observed values for that
feature;

(b) generate the reference features from a uniform distribution over a box aligned with the
principal components of the data. In detail, if X is our n x p data matrix, assume that
the columns have mean 0 and compute the singular value decomposition X = UDV™.
We transform via X’ = XV and then draw uniform features Z’ over the ranges of the
columns of X', as in method (a) above. Finally we back-transform via Z = Z'V7 to
give reference data Z.

Method (a) has the advantage of simplicity. Method (b) takes into account the shape of the
data distribution and makes the procedure rotationally invariant, as long as the clustering
method itself is invariant.
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In each case, we estimate E{log(W,)} by an average of B copies log(W¥), each of which is
computed from a Monte Carlo sample X%, . . ., X** drawn from our reference distribution.
Finally, we need to assess the sampling distribution of the gap statistic. Let sd(k) denote the
standard deviation of the B Monte Carlo replicates log(W}). Accounting additionally for the
simulation error in E¥{log(W))} results in the quantity

s, = /(1 + 1/B) sd(k).

Using this we choose the cluster size £ to be the smallest k& such that Gap(k) > Gap(k + 1)
— Se1- This ‘1-standard-error’ style of rule is used elsewhere (e.g. Breiman ef al. (1984)). In
the simulation studies later in this paper and in other real data examples, we have found
empirically that it works well. A more refined approach would employ a multiplier to the s,
for better control of the rejection of the null model.

Computation of the gap statistic proceeds as follows.

Step I: cluster the observed data, varying the total number of clusters fromk =1, 2, . . ., K,
_giving within-dispersion measures W, k=1, 2, .. ., K.

Step 2: generate B reference data sets, using the uniform prescription (a) or (b) above, and
cluster each one giving within-dispersion measures W3, b=1,2, ..., B,k=1,2,.. ., K.

Compute the (estimated) gap statistic
Gap(k) = (1/B) ; log(Wi) — log(W)).
Step 3: let [ = (1/B) T, log(W?,), compute the standard deviation
sd = [(1/B) 3 {log(W ) — 11"

and define s, = sd;+/(1 -+ 1/B). Finally choose the number of clusters via
k = smallest k such that Gap(k) > Gap(k + 1) — sj.1.

Fig. 1 shows an example using K-means clustering. The data (Fig. 1(a)) fall in two distinct
clusters. The within sum of squares function W) is displayed in Fig. 1(b). The functions
log(W,) and E*{log(W,)} are shown in Fig. 1(c), with the gap curve displayed in Fig. 1(d),
with +1 standard error bars. The gap curve has a clear maximum at £ = 2.

Fig. 2 examines the behaviour of the gap estimate with unclustered data. The raw data are
100 observations uniformly distributed over the unit square. The observed and expected
curves are very close, and the gap estimate is £ = 1.

4.1. Example: application to hierarchical clustering and DNA microarray data
In this example our data are a 6834 x 64 matrix of gene expression measurements. Each row
represents a gene, and each column a human tumour. The data are taken from Ross et al.
(2000) and are available at http: //www-genome.stanford.edu/nci60. The columns
have a label (cancer type), but this label was not used in the clustering. We applied
hierarchical (agglomerative) clustering to the columns, using squared error and average
linkage, and obtained the dendrogram in Fig. 3. Not surprisingly, many cancers of the same
type are clustered together. For more on the utility of hierarchical clustering for microarray
data, see Ross et al. (2000).

The results for the gap statistic are shown in Fig. 4. The estimated number of clusters is 2.
The corresponding cut of the dendrogram is indicated by the dotted line in Fig. 3. However,
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Fig. 2. Results fo*r the uniform data example: (a) data; (b) within sum of squares function W,; (c) functions
log (W) (O) and E,flog (W)} (E); (d) gap curve

the gap function starts to rise again after six clusters, suggesting that there are two well-
separated clusters and more less separated ones. The derivation for the gap test assumes
that there are well-separated uniform clusters. In cases where there are smaller subclusters
within larger well-separated clusters, it can exhibit non-monotone behaviour. Hence it is
important to examine the entire gap curve rather than simply to find the position of its
maximum.

5. Other approaches

Many methods have been proposed for estimating the number of clusters: a good summary is
given by Gordon (1999). He divides the approaches into global and local methods. The
former evaluate some measure over the entire data set and optimize it as a function of the
number of clusters. The latter consider individual pairs of clusters and test whether they
should be amalgamated. Hence the gap method is a global procedure.

According to Gordon, most global methods have the disadvantage that they are undefined
for one cluster and hence offer no indication whether the data should be clustered at all.
A very recent proposal is given by Cuevas et al. (2000); however, this relies on a high
dimensional density estimate, which may suffer from the curse of dimensionality.
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Fig. 3. Dendrogram from the deoxyribonucleic acid (DNA) microarray data: the dotted line cuts the tree, leaving
two clusters as suggested by the gap statistic
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Fig. 4. (a) Logarithmic observed (O) and expected (E) within sum of squares curves and (b) the gap statistic for
the DNA microarray data

Milligan and Cooper (1985) carried out a comprehensive simulation comparison of 30
different procedures. Among the global methods performing the best was the index due to
Calinski and Harabasz (1974):

B(k)/(k — 1)

O =30/ -5

(©)

where B(k) and W(k) are the between- and within-cluster sums of squares, with & clusters.
The idea is to maximize CH(k) over the number of clusters k. CH(1) is not defined; even if it
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were modified by replacing k — 1 with £, its value at 1 would be 0. Since CH(k) > 0 for k > 1,
the maximum would never occur at k = 1.

As mentioned earlier, Krzanowski and Lai (1985) proposed the quantity W,k*” as a
criterion for choosing the number of clusters. This followed a proposal by Marriott (1971),
who used the determinant, rather than the trace, of the within sum of squares matrix. The
actual proposal of Krzanowski and Lai (1985) defined

DIFF(k) = (k — V)" W,_, — k**w, (7
and chose k to maximize the quantity
_ | DIFF(k)
KL = ’DIFF(k+ Dy ®

This is similar to maximizing W, k*”, but Krzanowski and Lai (1985) argued that it may
have better properties. Note that KI(k) is not defined for £ = 1 and hence cannot be used for
testing one cluster versus more than one.

Hartigan (1975) proposed the statistic

_ W)
H(k)_{W(k+1)—l}/(n— — ). ©)

The idea is to start with £ = 1 and to add a cluster as long as H(k) is sufficiently large. One
can use an approximate F-distribution cut-off; instead Hartigan suggested that a cluster be
added if H(k) > 10. Hence the estimated number of clusters is the smallest k£ > 1 such that
H(k) < 10. This estimate is defined for £ = 1 and can potentially discriminate between one
versus more than one cluster.

Kaufman and Rousseeuw (1990) proposed the silhouette statistic, for assessing clusters and
estimating the optimal number. For observation i, let a(i) be the average distance to other
points in its cluster, and b(i) the average distance to points in the nearest cluster besides its
own nearest is defined by the cluster minimizing this average distance. Then the silhouette
statistic is defined by

b(i) — a(i)
max({a(i), b(i)}
A point is well clustered if s(7) is large. Kaufman and Rousseeuw (1990) proposed to choose

the optimal number of clusters £ as the value maximizing the average s(i) over the data set.
Note that s(7) is not defined for the k = 1 cluster.

s()) = (10)

6. Simulations
We generated data sets in five different scenarios:

(a) null (single-cluster) data in 10 dimensions— 200 data points uniformly distributed over
the unit square in 10 dimensions;

(b) three clusters in two dimensions— the clusters are standard normal variables with (25,
25, 50) observations, centred at (0, 0), (0, 5) and (5, —3);

(c) four clusters in three dimensions—each cluster was randomly chosen to have 25 or 50
standard normal observations, with centres randomly chosen as N(0, 5I) (any simu-
lation with clusters having a minimum distance less than 1.0 units between them was
discarded,;
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(d) four clusters in 10 dimensions—each cluster was randomly chosen to have 25 or 50
standard normal observations, with centres randomly chosen as N(0, 1.97) (any
simulation with clusters having a minimum distance less than 1.0 units between them
was discarded; in this and the previous scenario, the settings are such that about half of
the random realizations were discarded);

(e) two elongated clusters in three dimensions— each cluster is generated as follows. Set
X, = X, = x3 = t with ¢ taking 100 equally spaced values from —0.5 to 0.5 and then
Gaussian noise with standard deviation 0.1 is added to each feature. Cluster 2 is
generated in the same way, except that the value 10 is added to each feature at the end.
The result is two elongated clusters, stretching out along the main diagonal of a three-
dimensional cube.

50 realizations were generated from each setting. In the non-null settings, the clusters have no
overlap, so there is no confusion over the definition of the ‘true’ number of clusters. We
applied six different methods for estimating the number of clusters: CH, KL, Hartigan and
Silhouette are given by equations (6), (8), (9) and (10) respectively. Gap/unif'is the gap method
with a uniform reference distribution over the range of each observed feature; Gap/pc uses the
uniform reference in the principal component orientation. The results are given in Table 1.

The gap estimate using the uniform reference does well except in the last problem, where
the oblong shape of the data adversely affects it. The Gap/pc method, using a uniform
reference in the principal components orientation, is the clear winner overall.

The other methods do quite well, except in the null setting where the gap estimate is the
only one to show a reasonable performance. Of course it might be possible to modify any of
the methods to handle the null (single-cluster) case: one possibility would be to simulate their
null distribution under uniform data, in a manner similar to the gap estimate.

7. Overlapping classes

The simulation studies suggest that the gap estimate is good at identifying well-separated
clusters. When data are not well separated, the notion of a cluster is not any more well
defined in the literature.

In this section, we did a small experiment to assess how the gap method responds to non-
separated data. Each simulated data set consists of 50 observations from each of two
bivariate normal populations, with means (0, 0) and (A, 0), and identity covariance. For each
sample we computed the gap estimate of the number of clusters and also recorded the
proportion of data points from the first population that were closer to the second population
mean, or vice versa. We call this the amount of ‘overlap’. This was done for 10 values of A
running from 0 to 5, with 10 simulations done for each value of A. The results are shown in
Fig. 5. Roughly speaking, if the overlap proportion is p, then the probability of selecting one
cluster is also about p.

8. Discussion

The problem of estimating the number of clusters in a data set is difficult, underlined by the
fact that there is no clear definition of a ‘cluster’. Hence, in data that are not clearly separated
into groups, different people might have different opinions about the number of distinct
clusters. In this paper, we have focused on well-separated clusters and have proposed the
gap statistic for estimating the number of groups. When used with a uniform reference
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Table 1. Results of the simulation studyt

Method Estimates of the following numbers of clusters k:

1 2 3 4 5 6 7 8 9 10
Null model in 10 dimensions
CH 0f 50 0 0 0 0 0 0 0 0
KL 0f 29 5 3 3 2 2 0 0 0
Hartigan 0f 0 1 20 21 6 0 0 0 0
Silhouette 0f 49 1 0 0 0 0 0 0 0
Gap/unif 491 1 0 0 0 0 0 0 0 0
Gap/pc 50% 0 0 0 0 0 0 0 0 0
3-cluster model
CH 0 0 50% 0 0 0 0 0 0 0
KL 0 0 39% 0 5 1 1 2 0 0
Hartigan 0 0 1f 8 19 13 3 3 2 1
Silhouette 0 0 50% 0 0 0 0 0 0 0
Gap/unif 1 0 49% 0 0 0 0 0 0 0
Gap/pc 2 0 48% 0 0 0 0 0 0 0
Random 4-cluster model in 3 dimensions
CH 0 0 0 421 8 0 0 0 0 0
KL 0 0 0 35% 5 3 3 3 0 0
Hartigan 0 1 7 3t 9 12 8 2 3 5
Silhouette 0 20 15 15% 0 0 0 0 0 0
Gap/unif 0 1 2 471 0 0 0 0 0 0
Gap/pc 2 2 4 421 0 0 0 0 0 0
Random 4-cluster model in 10 dimensions
CH 0 1 4 441 1 0 0 0 0 0
KL 0 0 0 45% 3 1 1 0 0 0
Hartigan 0 0 2 481 0 0 0 0 0 0
Silhouette 0 13 20 161 5 0 0 0 0 0
Gap/unif 0 0 0 50% 1 0 0 0 0 0
Gap/pc 0 0 4 461 0 0 0 0 0 0
2 elongated clusters
CH 0 0f 0 0 0 0 0 7 16 27
KL 0 50% 0 0 0 0 0 0 0 0
Hartigan 0 0f 0 1 0 2 1 5 6 35
Gap/unif 0 0 17 16 2 14 1 0 0 0
Gap/pc 0 50% 0 0 0 0 0 0 0 0

tNumbers are counts out of 50 trials. Some rows do not add up to 50 because the
number of clusters chosen was greater than 10.
1Column corresponding to the correct number of clusters.

distribution in the principal component orientation, it outperforms other proposed methods
from the literature in our simulations. The simpler uniform reference (over the range of the
data) works well except when the data lie near a subspace.

The DNA microarray example shows the importance of graphing the gap statistic, rather
than simply extracting the estimated maximum. With real data the gap curve can have many
local maxima, and these themselves can be informative.

There are many avenues for further research. One is a consideration of other possibilities
for the reference distribution: for example, we could proceed sequentially. Having found &
clusters, we could generate reference data from k separate uniform distributions, over the
support of each of the k estimated data clusters. As before, a principal component orientation
would probably produce better results. The gap method can also be used with adaptive
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Fig. 5. Gap method for overlapping data: the proportion of times that the method chose one cluster, as a
function of the proportion of points in the overlap region between the two subpopulations

versions of K-means clustering (see for example Diday and Govaert (1977)), which may be
better at finding elongated clusters than the standard version. Similarly, it may be applicable
to model-based clustering (Fraley and Raftery, 1998).

A referee raised the interesting question of how to carry out the gap test when the
dimension p of the data is unknown and only pairwise dissimilarities are available. One
possibility would be to use multidimensional scaling to map the data into a low dimensional
space while preserving the dissimilarities, and then to proceed in this space as described in the
paper. However, a more direct method would be preferable and we leave this as an open
problem.

It would be especially useful to develop methods for an efficient simulation of reference
data from the log-concave MLE. The use of this distribution in the gap method could then be
compared with the uniform reference distribution.
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Appendix A: Proofs

A.1.  Proof of theorem 1
Setting p;:= (j—4)/k for 1<,j<k shows that MSEy(k) < E{min, (U — )’} = 1/12k*, whence
MSE(k)/MSEy(1) < 1/k*. Thus it is enough to prove ’

k 1
Y P(X e l)var,(X) > 2 var(X) (1
i=1

for every partition I;, . . ., I, of the support of X. Here we write

2
J {X—J XdPx/P(XGI)} dPX
I 1
P(X el)

var,(X) =
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for the conditional variance of X given X € I.

By standard arguments (e.g. convolution with a Gaussian kernel and using Ibragimov’s convolution
result; see theorem 1.10 in Dharmadhikari and Joag-dev (1988)), it is enough to consider a non-
degenerate cumulative density function F of X that has a density f which is logarithmically concave and
differentiable in the interior of its support and so does not vanish there. Hence

d o fIF@)_d

4 OV =F ) = g s
But d[log{f(x)}]/dxis non-increasin% as fis logarithmically concave. Together with the fact that F~'(¢) is
non-decreasing, it follows that f{F~ ()} has a non-increasing derivative and hence is concave on [0, 1].

Next, write
1 00 00
var@) =3 || 0= 9 ) dxdy
1 1 ¢l
== J J (F7'(v) — F'w))* du dv
2 )o Jo
1 pl v 1 2
= ————dty dudv
JO Ju {Ju f{F_l(t)} }
by symmetry and the fundamental theorem of calculus. The change of variable z = v — u gives
1 1—z u+z 1 2
var(X) = ——— d¢| dudz. 12
( ) Jz:O Ju:O [Ju f{F_l(t)} :| ( )
Proceeding likewise with var;(X) we obtain
' - : S +FU)(42) . 5
F(I) var, (X 2J F31[ J ———dt} dudz,
=3 [ 2] Polms @) i

Si—1+F(IHu

where we set s5;:= 2]<,F(1) 1— .. k.
Using the concavity of f{F~'()} and Holder’s inequality it can be shown that the above expression is
not smaller than

si_ (1=2)+F(Ilu+z

k(1 g2 ol | )
; J =0 k Ju—O [— J m dt:[ F(I,) dudz

si1(1=z2)+F(I)u
si—1(1=2)+F(I)(1-2)

wLE | D] we

v=s;_1(1-2)

=n var(X ) by equation (12),

proving inequality (11).

A.2. Proof of theorem 2
If X is uniformly distributed on U([0, k] x [0, €]”~"), then MSE,(1) = {k* + (p — 1)é’}/12,and takmg,u =
(j=1/2,¢€/2, ..., €/2),1 <j <k, shows that MSEy(k) < E(min,, [|X — p|| B ={1+4(p—1eY/12. So

inf {MSE(k)/MSE(1)} < 1/k%,
XeSP
even if we were to consider only X € 87 with non-degenerate support.

However, suppose that U € S? satisfies MSEU(k)/ MSE(1) = 1/k*. Each of the marginals U, of U,
1 < i< p, must bein S' by theorem 2.16 in Dharmadhikari and Joag-dev (1988). Hence
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MSE, (1) < K’ MSEy, (k) for all i by theorem 1, (13)

and clearly
ilMSEU,_(k) < MSEy(k) for all k > 1. (14)
So
MSE (1) = ﬁ;MSEUi(l) <K ZP;MSEUi(k) < MSE,(k),

and hence MSE;(k)/MSE (1) = 1/k* can only hold if we have equality in expressions (13) and (14).

To avoid technicalities we shall only give the main arguments for the remainder of the proof.
Proceeding similarly as in the proof of theorem 1 we conclude from equality in expression (13) that the
U, must have a uniform distribution, with the optimal centres v,(j), 1 < j < k, equally spaced. Let /; be
the length of the support of U,. We then check that expression (14) can hold with equality only if with
probability 1 the centre ~y,(j) closest to U; has the same index j for all marginals i. But the set of u € R?
for which the latter statement holds has Lebesgue measure k IT7_, /;,/k — 0 as k — oc. Hence, by
Prekopa’s theorem (theorem 2.8 in Dharmadhikari and Joag-Dev (1988)), the support of U must be
degenerate and contained in a linear subspace of R”. Repeating this argument at most p — 1 times
proves the theorem.
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